
Measuring Etch: the size of Debian 4.0∗

Juan Jośe Amor, Gregorio Robles, Jesus M. González-Barahona, Javier Fernández-Sanguino Peña
GSyC/Libresoft, Universidad Rey Juan Carlos (Madrid, Spain)

{jjamor,grex,jgb,jfs}@gsyc.escet.urjc.es

Abstract

The Debian GNU/Linux operating system is one of
the most popular GNU/Linux distributions, not only
among end users but also as a basis for other distribu-
tions and embedded systems. Besides being popular, it
is also one of the largest software compilations and thus
a good starting point to analyze the current state of libre
(free, open source) software. This work is a preliminary
study about the new Debian GNU/Linux release (4.0, co-
denamed etch), which was officially released April 8th,
2007. We have measured the size of Debian in lines
of code (which is close to 283 million source lines of
code), what programming languages have been used to
write that code, and the size of the packages included
in the distribution. We have also applied a ‘classical’
and well-known cost estimation methods which gives an
idea of how much it would suppose to create something
as big as Debian from scratch. We estimate that cost to
be over 10 billion USD.

1 Introduction

On April 8th 2007, the Debian Project announced the
official release of the Debian GNU/Linux version 4.1,
codenamedetch, after 21 months of development [8].
The Debian distribution is put together by the Debian
project, a group of more than 1,000 volunteers (also
known as maintainers) whose main tasks cover picking
up libre software packages, adapting, integrating with
other pieces of the operating system and packaging them
for inclusion in the distribution [18]. Debian maintain-

∗This work is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. To view a copy of this license, visit
http://www.gnu.org/licenses/gpl.txt or send a letter to Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,MA 02110-
1301, USA.

ers package software which they obtain from the original
(upstream) authors, ensuring that it works smoothly with
the rest of the programs in the Debian system. All pack-
ages have to follow the technical requirements defined
in theDebian Policy Manual[7] which ensures that they
interoperate properly with other packages and follow the
standards the operating system follows, which include
the Filesystem Hierarchy Standard(or FHS) and, par-
tially, the Linux Standard Base(or LSB, submitted as
ISO/IEC 23360).

Debian 4.0 includes all the major libre software pack-
ages available at the time of its release. Only in its main
distribution, composed just of libre software (according
to the Debian Free Software Guidelines [5], or DFSG),
there are more than 10,100 source packages. The whole
release comprises almost 18,000 binary packages, which
users can install easily from various media or via the In-
ternet.

In this paper, we have analyzed this operating system,
measured its size, and compared it to other contempo-
rary GNU/Linux distributions. We decided to write this
paper as an update of others published by our group, in
the same line, starting withCounting Potatoes[11], and
updated untilMeasuring Sarge[1], which were written
to cover previous Debian releases. The structure of this
paper is as follows: the next section briefly presents the
methods we have used for collecting the data shown in
this paper. Later on, we offer the results of counting De-
bian 4.0 (including total counts, counts by programming
language, counts for the largest packages, etc.). The fol-
lowing section offers some comments on the numbers
obtained and how they should be understood, as well as
some comparisons with Red Hat Linux distributions and
other operating systems, both free and proprietary. The
paper finishes with some conclusions and references.

2 Some background about Debian

The Debian 4.0 GNU/Linux distribution is put to-
gether and maintained by the Debian project. In this
section, we offer some background data about Debian
as a project, and about the Debian 4.0 release.

2.1 The Debian Project

The Debian Project is a worldwide group of volun-
teers who endeavor to produce an operating system dis-
tribution that is composed entirely of free (libre) soft-
ware. The principle product of the project to date is
the Debian GNU/Linux software distribution, which in-
cludes the Linux operating system kernel, and thousands
of prepackaged applications.

This distribution is available for several architectures,
including Intel x86, ARM, PowerPC, MIPS, Alpha, and
SPARC. Although the kernel of the Debian GNU/Linux
software distribution is the Linux kernel, there are other
versions, currently in pre-testing phase, that are based
on different kernels like Hurd and FreeBSD’s. There is
also a derived distribution (Nexenta) which uses Sun’s
OpenSolaris kernel.

The core of the Debian distribution (called section
main, which amounts for the vast majority of the pack-
ages) is composed only of free software, according to the
DFSG. It is available on the Net for download, and many
redistributors sell it on CDs or other media. The De-
bian distribution is put together by the Debian project, a
group of over 1,400 volunteer developers spread around
the world, collaborating via the Internet. The work done
by those developers includes adapting and packaging all
the software included in the distribution, maintaining
several Internet-based services (web site, on-line archive
and mirrors, bug tracking system, support and devel-
opment mail lists, wiki, etc.), translate and internation-
alize Debian-specific content, developing tools specific
to Debian (including its package management tools and
installation software), and in a wide sense, maintaing
all the infrastructure that makes the Debian distribution
possible.

Debian developers package software which they ob-
tain from the original (upstream) authors, ensuring that
it works smoothly with the rest of the programs in
the Debian system. All packages must follow the De-
bian Policy Manual [7]. Most of the work associated
with the packaging a given program usually revolves
around making it compliant with those rules. Develop-
ers also take bug reports, try to fix them (reporting fixes
and problems upstream), follow new upstream develop-
ments, and build all the software glue needed for making

Debian system work. Bugs and security holes are dis-
cussed openly, and updates fixing important problems
are made available for stable releases on a daily basis
so that users can maintain their systems secure and as
bug-free as possible. In some cases Debian developers
are themsleves the original authors of software packages
for the Debian distribution, either because it was written
specifically for Debian, because the upstream author is
no longer maintaining the package and it is still being
maintained, fixed and improved in Debian, or because
the Debian version of a program is so heavily modified
in Debian that it is maintained separately from the orig-
inal author (and is, in essence, a fork).

Debian is unique for many reasons. Its dedication
to free software, its non-profit nature, and its open de-
velopment model (where most of the discussions are
addressed openly in public lists) are remarkable. The
project is committed to free software, as is reflected
in the Debian Social Contract [6]. The definition of
what Debian understand as free software can be found
in the Debian Free Software Guidelines (DFSG), and in
essence is the same software which can be considered
open sourcesoftware (which is not strange, since the
Open Source Definition was actually derived from the
DFSG).

Debian also inspires some other interesting distribu-
tions. Two of the most known derivatives are Knop-
pix [14], a live distribution, and Ubuntu [4], a distribu-
tion with a tighter release schedule (every six months)
very oriented towards the end-user and sponsored up
by a company which has contracted many well known
Debian developers. There are other derivatives, like
Metadistros [13], which have a broader scope.

2.2 Debian Etch

Debian 4.0 (etch) is thestableDebian release since
April 2007. It includes all the major libre software pack-
ages available at that time.

In addition toetch, the Debian archives include two
under-development releases:testingandunstable. After
a freeze of the five months in which only packages fixing
bugs were included in thetestingrelease, development
started in this release afteretchwas published. The co-
dename of the new release will belenny. The unstable
release (which is always known assid) is used by devel-
opers to upload new package versions (which includes
new versions of the package software), and test them.
In order to guarantee that thetestingrelease is always
in a releasable state, changes to packages need to be up-
loaded tounstable. If no important bugs are filed against
the new packages nor to the packages they depend on for

2

an specific time frame, the packages are automatically
included intestingand considered for inclusing in the
next stable release.

Historically, Debian was split in two archives: the
regular one and thenon-US archive. The non-US
archive included those packages which had some le-
gal impediment to be exported from the United States
of America (usually related with strong cryptography).
However, since Debian 3.1, these archives are no longer
used and now all packages are available in theregular
archive.

The archive is composed of severalcategories:
main, contrib andnon-free. Themain category
is made up of packages that comply with the DFSG and
do not require any non-DFSG packages. On the other
side,non-free is the category made up of packages
not compliant with the DFSG (but can be distributed
by Debian) or are encumbered by patents or other le-
gal issues that make their distribution problematic. Fi-
nally, contrib is the category made up of packages
that comply with the DFSG but require a non-DFSG
packages (that is, innon-free).

For the work referenced in this paper we have con-
sidered only themain category. It is (by far) the largest
fraction of the archive, and is only composed of free
software. In many respects, it is one of the largest co-
ordinated collection of free software available on the In-
ternet.

3 Methodology

The approach used for collecting the data presented
in this paper is, in summary, as follows:

1. Where is the source code of a Debian release?

Source code and binary packages for current dis-
tributions (those that are supported by the project)
are available from the Internet in primary mir-
rors located at 35 different countries as well as
a large number of secondary mirrors. There
are over 300 mirror sites distributing all this
content. Fortunately enough, source code for
both current and past Debian releases is archived,
and available for everyone on the Internet at
ftp://archive.debian.org and its mir-
rors. The only problem is to determine the specific
list of source packages for any given release, and
where to access them.

2. Downloading and collecting the data

Once we know what files to download, we have to
download all of them before being able of gathering

data. Since the size of the unpackaged sources for
a Debian release is very large, we chose to work on
a per-package basis, gathering all the relevant data
from it (mainly, the number of lines of code) before
removing it and following on with the download
and analysis of the next one.

3. Final analysis

Analyze the collected data and get some statistics
regarding the total number of physical SLOC of
the release, the SLOC for each package, the SLOC
for each of several programming languages consid-
ered, etc.

In the following sections these three steps are de-
scribed in more detail.

3.1 What source code makes a Debian release?

The Debian packaging system considers two kind of
packages: source packages and binary packages. Binary
packages provide the programs compiled for the set of
computer architectures Debian supports, although there
is also code which is architecture-independant that is re-
leased as a binary package (one package servers all ar-
chitectures in this case). One or more binary packages
can be automatically built from one source package. For
example, a source package of a program can be divided
in a binary package for the program itself, a binary pack-
age for its libraries (if they can be reused by other pro-
grams) and a binary package for its documentation. For
this paper, only source packages are relevant, and there-
fore we will no longer refer to binary packages.

When building a source package, a Debian developer
starts with theoriginal source (ftp site, etc) of a piece of
software. In Debian parlance, that source is calledup-
stream. The Debian developer patches upstream sources
if needed, and creates a directorydebian with all
the Debian configuration files (including data needed to
build the binary package). Then, the source package is
built, usually (but not always) consisting of three files:
the upstream sources (atar.gz file), the patches to get
the Debian source directory (adiff.gz file, includ-
ing both patches to upstream sources and thedebian
directory), and a description file (withdsc extension).
Howeverdsc files are present only in the last releases.
On the other hand patch files are not present fornative
source packages (those developed for Debian, with no
upstream sources).

Source packages of current Debian releases are part
of the Debian archive. For every release, they re-
side in thesource directory. There are sites in

3

the Internet including the source packages for every
official Debian release to date (usually, mirrors of
ftp://archive.debian.org). Since Debian 2.0,
for every release aSources.gz file is present in the
source directory, with information about the source
packages for the release, including the files that com-
pose each package. This is the information we use to
determine which source packages, and which files, have
to be considered for Debian 4.0.

However, not all packages inSources.gz should
be analyzed when counting lines of code. The main rea-
son to do this is the existance, in some cases, of sev-
eral versions of the same piece of software. For in-
stance, in Debian 4.0 we can find source packages for
gcc2.95, gcc3.3, gcc3.4 andgcc-4.0. Count-
ing all of these packages would imply counting the GNU
Compiler Collection four times, which is not the in-
tended procedure. Therefore, a manual inspection of the
list of packages is needed for every release, detecting
those which are essentially versions of the same soft-
ware, and choosing onerepresentativefor each family
of versions.

These cases may cause an underestimation of the
number of lines of the release, since different versions
of the same package may share a lot of code, but not all
(consider for instance PHP4 and PHP3, with the former
being an almost complete rewrite of the latter). How-
ever, we think this effect is negligible, and compensated
with some overestimations (see below).

In other cases, we have decided to analyze packages
which may have significant quantities of code in com-
mon. This is the case, for instance, ofemacs and
xemacs. Being the latter a code fork of the former, both
share a good quantity of lines which, even when not be-
ing exactly equal, are evolutions of the sameancestors.
Other similar case isgcc andgnat. The latter, an Ada
compiler, is built upon the former (originally the C com-
piler), adding many patches and lots of new code. In
those cases, we have considered that the code is differ-
ent enough to consider them as separate packages. This
probably leads to some overestimation of the number of
lines of code of the release.

The final result of this step is the list of packages (and
the files composing them) that we consider for analyzing
the size of a Debian release. This list is done by hand
(with the help of some simple scripts) for each release.

3.2 Downloading and collecting the data

Once the packages and files composing Debian 4.0
are determined, they are downloaded from the Internet.

Some Python scripts where used to automate this pro-
cess, which (for each package) consists of the following
tasks:

• Download the files that compose the package

• Extract the source directory corresponding to the
upstream package (by exploding thetar.gz file).
After extraction, data about this upstream source is
gathered.

• Patch the upstream directory with thediff.gz
file, to get the Debian source directory. After ex-
traction, data about it is gathered.

• Delete thedebian directory, to avoid count-
ing maintainer scripts (stored in this directory),
and gathering data about this sans-debian Debian
source package.

Not all packages have upstream version. Therefore,
during this process, some care has to be taken to differ-
entiate this situations. Also, some upstream packages
contain new packaged files. We need to unpack them
also.

The fetching of data is done usingSLOCCount
scripts [20], three times for each package (one in each
phase, see above), which stores the count of lines of code
for each package in a separate directory, ready for later
inspection and reporting.

The reason for fetching data three times for every
package is to analyze the impact of the Debian devel-
oper on the source package. This impact can be in the
form of patches to the source (usually to make it more
stable and secure, to conform to Debian installation pol-
icy, or to add some functionality to it) or in the sense
of installation scripts (which can be singled out when
counting sans-debian source packages).

The final result of this step is the collection of all the
data fetched from the downloaded packages, organized
by package, and ready to be analyzed. These data con-
sist mainly of lists of files and line counts for them, split
by language.

3.3 Final analysis

The last step is the generation of reports, using
SLOCCount and some scripts, to study the gathered
data. Since in this step all the fetched data is available
locally, and in a form easy to parse, the analysis can be
done quickly, and can be repeated easily, looking for dif-
ferent kinds of information.

4

The final result of this step is a set or reports and sta-
tistical analysis, using the data fetched in the previous
step, and considering them from different points of view.
These results are presented in the following section.

4 Results of counting Debian Etch

The main results of our current analysis of the Debian
4.0 GNU/Linux release can be organized in the follow-
ing categories:

• Size of Debian Etch.

• Importance of the most used programming lan-
guages.

• Analysis of the evolution in the size of the most
relevant packages.

• Effort estimations.

4.1 Size of Debian Etch

We have counted the number of source lines of
code of Debian GNU/Linux 4.0 in three different ways,
with the following results (all numbers are approximate,
see [17] for details):

• Count of upstream packagesas such: 260,000,000
SLOC.

• Count of Debian source packages:283,000,000.

• Count of Debian source packages withoutdebian
directory:277,000,000.

For details on the meaning of each category, the
reader may revisit the section 3.2. In short, the count
of upstream packages could be considered as the size
of the original software used in Debian. The count of
Debian source packages represents the amount of code
actually present in the Debian 4.0 release, including both
the work of the original authors and the work of Debian
developers. This latter work includes Debian-related
scripts and patches. Patches can be the work of Debian
developers (for instance to adapt a package to the De-
bian policy or to locally fix a but), be provided by up-
stream authors (in versions which are not released yet)
or might have been provided by other users (submitted
as bug reports, available on the Internet) or developers
of other distributions which also ship the same software.
The count of Debian packages without thedebian di-
rectory excludes Debian-related scripts, and therefore is

a good measure of the size of the packages as they are
found in Debian, excluding the specific Debian-related
scripts.

It is also important to notice that packages developed
specifically for Debian have usually no upstream source
package. This is, for instance the case ofapt anddpkg,
package management tools specific to Debian, which are
present only in the archive as a Debian source package.

4.2 Programming languages

The number of physical SLOC, classified by pro-
gramming language, are (roughly rounded) as follows
(numbers for Debian source packages):

• C: 145,278,000SLOC (51%)

• C++: 52,983,000SLOC (18.7%)

• Shell: 29,327,000SLOC (10.4%)

• Java:8,969,000SLOC (3.17%)

• PERL:8,074,000SLOC (2.85%)

• LISP:7,659,000SLOC (2.7%)

• Python:7,219,000SLOC (2.55%)

• Assembler:4,121,000SLOC (1.46%)

• PHP:3,270,000SLOC (1.15%)

• FORTRAN:2,678,000SLOC (0.95%)

• C#: 2,336,000SLOC (0.83%)

• Pascal:2,240,000SLOC (0.79%)

• TCL: 1,635,000SLOC (0.58%)

Below 0.5% we find some other languages: Ada
(0.46%), ML (0.42%), Objective C (0.39%), YACC
(0.25%), and other below 0.1%.

In figure 1 we can view the importance of main lan-
guages versus the rest. It is consistent with the fact that
most packages are written in C. C++ is another language
present in most packages, and it is the main language
in some of them (such as Openoffice.org or Iceweasel).
The same fact occurs with Lisp, which is the main lan-
guage in several packages (such as Emacs), but is also
used in most of rest packages. Next, shell scripts are
used to support configuration and other auxiliary task in
most packages.

When we count the lines in the Debian source pack-
ages without thedebian directory (which contains

5

ansic

cpp

sh

java

other

Figure 1. Pie with the distribution of source
lines of code for the majoritary languages
in Debian 4.0

package configuration files and maintainer scripts), the
numbers are similar. This means that the maintainer
scripts are not a significant part of the distribution. The
main difference is in Shell and Perl lines, which uncov-
ers the preferred languages for those scripts.

However, when we count original (upstream) source
packages there are more remarkable differences. These
differences can usually be amounted to patches to up-
stream packages made by the Debian developer. There-
fore, looking at this numbers, we are able to know in
which languages most patched packages are written.

4.3 The largest packages

The largest packages in the Debian etch distribution
are:

• Openoffice.org: 5,215,000 SLOC. C++ amounts
4,613,000, while Java amounts 381,000 and C
117,000. In this package, there are representation
of other 14 languages. Openoffice.org is the well
known office suite, which development is leaded
by Sun Microsystems.

• Linux2.6: 4,921,000 SLOC, mainly C code
(4,700,000) and small amounts on other 10 lan-
guages. This is currently the only operating system
kernel used in Debian.

• ia32-libs: 4,006,000 SLOC, mainly C code
(3,530,000) and other 20 languages. This package
contains runtime libraries for the ia32 architecture,
for use on systems running 64-bit kernels.

• gcc-4.1: 3,630,000 SLOC, composed mainly of C
lines (1,211,000) and 18 more languages. It is in-
teresting to see that there have been identified more
than 1,000,000 SLOC of shell code. This package
is one of the releases of the GNU Compiler Collec-
tion included in Debian.

• iceweasel: 2,777,000 SLOC, mainly C++
(1,784,000). This package is a rebranded version
of the Mozilla Firefox web browser. Its name is
changed because of trademark restrictions imposed
upstream.

• icedove: This package, a rebranded version of
the Mozilla Thunderbird e-mail client , amounts
2,709,000 SLOC, mainly composed of C++ code
(1,722,000 SLOC), C code (889,000 SLOC) and 15
more languages.

• vnc4: 2,357,000 SLOC, mainly C code (2,205,000
SLOC). VNC4 is a well known remote graphical
console access system.

• eclipse: Eclipse is the extensible tool platform and
Java IDE, created by IBM. It amounts 2,214,000
SLOC, mainly made of Java code (2,107,000
SLOC).

• stalin: It amounts 1,885,000 SLOC, mainly C
(1,786,204). Stalin is a Scheme compiler.

• mono: Mono is a platform for running and de-
veloping applications based on the ECMA/ISO
Standards, leaded by Novell. It amounts
1,766,000 SLOC and composed mainly of C# code
(1,496,000 SLOC) and a remarkable amount of C
lines (249,000 SLOC).

The numbers shown above are the approximage num-
ber of SLOC of the Debian source packages. Only data
for the more relevant languages found in each package
are reported.

The classification could be different had Debian de-
velopers packaged things in a different way. For in-
stance, if all Emacs extensions had been included in a
single Emacs package, it would have been much larger
(and it have been in thistop tenlist). However, a De-
bian source package usually matches well with what up-
stream authors consider as a package, and with the gen-
eral idea about what is a package.

Figure 2 shows the distribution of size in all packages
for Debian 4.0. The means size can be graphically ob-
served, and measured as 28,000 bytes in Debian 4.0. It is

6

 5e+06

 800000

 154500

 34000

 7500
 3500
 1500

 500

 0 2000 4000 6000 8000 10000 12000

Figure 2. Package sizes for Debian 4.0.
Packages are ordered by their size along
the X axis, while the counts in SLOCs are
represented along the Y axis (in logaritmic
scale).

interesting to note that this size, around 23,000, is simi-
lar in all Debian releases, from 2.0 to 3.0, but appears to
be growing since Debian 3.1, with a similar mean pack-
age size [2].

4.4 Effort and cost estimations

Using the basic COCOMO model [3], the effort to
build a system with the same size as Debian 4.0 can
be estimated. This estimation assumes aclassical, pro-
prietary development model, so it is not known if this
validly estimates the amount of effort which has actually
been applied to build this software. But it can give us at
least an order of magnitude of the effort which would
be needed in case a proprietary development model had
been used.

Using the SLOC count for the Debian source pack-
ages, the data provided by the basic COCOMO model
are as follows:

• Estimated effort: 881,180.28 person-months
(73,431.69 person-years).

Formula:2.4 ∗ KSLOC1.05

• Estimated schedule: 106.08 months (8.84 years).

Formula:2.5 ∗ Effort0.38

• Estimated cost to develop: 5,358,000,000 EUR.

To get these figures, each project was estimated as
though it was developed independently from the oth-
ers, which in nearly all cases is true. For calculating

the cost estimation, we have used the mean salary for
a full-time systems programmer during 2000, according
to PayScale.com and the same calculations done in [9],
which is of 30,401 EURO per year, and an overhead fac-
tor of 2.4 (for an explanation on why this factor, and
other details of the estimation model, see [21]).

5 Some comments and comparisons

The numbers offered in the previous section are no
more than estimations. They can give us at least or-
ders of magnitude, and allow for comparisons. But
they should not be taken as exact data, there are too
much sources of error and field for interpretation. In
this section, we will discuss some of the more impor-
tant assumptions made, and the possible sources of er-
ror. We will also compare the SLOC counts with the
SLOC counts for other system, with the aim of giving
the reader some context to interpret the numbers.

5.1 What is a source line of code

Since we rely on David A. Wheeler’sSLOCCount
tool for counting physical SLOC [21], we also
rely on his definition for physical source lines of
code. Therefore, we could say that we identify a
SLOC whenSLOCCount identifies a SLOC. However,
SLOCCount has been carefully programmed to honor
the usual definition for physical SLOC:

A physical source line of code is a line end-
ing in a newline or end-of-file marker, and
which contains at least one non-whitespace
non-comment character.

There is other similar measure, thelogical SLOC,
which sometimes is preferred. For instance, a line writ-
ten in C with two semicolons would be counted as two
logical SLOC, while it would be counted as one physical
SLOC. However, for the purposes of this paper, the dif-
ferences between both definitions of SLOC are not that
important, specially when compared to other sources of
error and interpretation.

5.2 Sources of inaccuracy in the SLOC counts

The counts of lines of code presented in this paper are
no more than estimations. By no means do we imply that
they are exact, specially when they refer to aggregates
of packages. There are several factors which cause this
inaccuracy, some are due to the tools used to count, some
others are due to the packages’ selection:

7

• Some files may have not been counted accurately.

Although SLOCCount includes carefully de-
signed heuristics to detect source files, and to dis-
tinguish source lines from comments, those heuris-
tics do not always work as expected. In addition,
in many cases it is difficult to distinguish automati-
cally generated files (which should not be counted)
from real files, althoughSLOCCount makes also
a good effort to recognize them.

• Different perceptions in the aggregation of package
families and the selection of a representative.

As we comment in the subsection where we dis-
cuss the selection of the list of packages to count,
the reasons to take a given package in or out of the
list are not unquestionable. Should we count differ-
ent releases of the same package? Should we count
only once code present in several packages, or not?
The usual criteria for measuring SLOC is “deliv-
ered source lines of code”. From this point of view,
all packages should be considered as they appear in
the Debian release. However, this is difficult to ap-
ply when some packages are clearly evolutions (or
forks) of other packages. Instead of considering all
of them as “delivered”, it seems more productive to
consider the older ones as “beta releases” or “an-
cestors”. However, in the libre software world it
is rather common to deliver stable releases every 6
or 12 months. Those stable releases have a lot of
work behind them, only to ensure stability, even if
they are also the foundation for later releases.

In most cases, we have adopted an intermediate de-
cision: to count only once families of packages
which are a line of evolution (as is the case of
emacs19 andemacs20), but to count separately
families of packages which happen to share some
code but are in themselves different developments
(as is the case ofgcc andgnat).

• Code reuse

Because of the licenses being used in the libre soft-
ware world there is a large quantity of code which
is reused by different projects. When the code be-
ing reused is stable and properly maintained it typ-
ically is provided as a library which is packaged
independently from the programs that use it. How-
ever, when developers do not agree in a common
interface for a library, the shared code is copied
over to projects and is consequently duplicated in
different software packages.

This also happens when a program is a fork from
another program and both programs might carry
independent development efforts by different up-
stream distributors.

Our approach does not currently include a way to
estimate or measure code reuse in the distribution.
We have yet to implement mechanisms to deter-
mine how much this affects our measurements.

• Different packaging conventions

Most packages adhere to a common packaging con-
vention which makes packages include the original
source code and Debian patches merged into the
code. However, since the Debian Policy does not
mandate an specific packaging convention, some
packages contain upstream’s code in binary format
(a tar.gz) which is uncompressed and patched when
the package is built to produce the binary packages.

Also, there are a set of tools (cdbs and yada
which are used in some packages to keep the orig-
inal source code and maintain the patches in the
debian/ subdirectory. As above, the patches to
the source code are only applied when the package
is built to produce binary packages.

Our tools currently do not handle this situation
which means that packages including the source
code in compressed formats will not be accounted
for, and Debian patches under some circunstances
will be considered maintainer scripts when they are
not.

5.3 Estimation of efforts and costs

Current estimation models, and specifically CO-
COMO, only consider classical, proprietary develop-
ment models. But libre software development models
are rather different, and therefore those models may not
be directly applicable. That way, we can only estimate
the cost of the system, had it been developed using clas-
sical development models, but not the actual cost (in ef-
fort or in money) of the development of the software
included in Debian 4.0.

Some of the differences that make it impossible to
use those estimation models are:

• Continuous release process (frequent releases).
The COCOMO model is based around the concept
of delivered SLOC, which implies one point in the
history of the project where the product is released.
From there on, the main development effort is de-
voted to maintenance. On the contrary, most libre

8

software projects deliver releases so frequently that
it could be considered as a continuous release pro-
cess. This process implies the almost continuous
stabilization of the code, at the same time that it
evolves. Free software projects are used to improve
and modify their software at the same time that they
prepare it for end users.

• Bug reports and fixes. While every proprietary
software system needs expensive debugging cycles
which have to be fully done in-house, libre soft-
ware can count on the help of people external to
the project, in the form of valuable bug reports, and
even fixes for them.

• Reuse, evolution, and inter-fertilization of code.
Code reuse of libre software is very common in
projects and is an integral part of the system being
developed. It is also common that several projects
develop evolutions of the same base system, in
many cases with all of them using code of the oth-
ers all the time. Some of this cases can also hap-
pen in proprietary developments, but even in large
companies, with many open projects, they are not
common, while they are the norm in libre software
projects.

• Distributed development model. Although some
proprietary systems are developed by geographi-
cally distributed teams, the degree of distributed
development found in libre software projects is sev-
eral orders of magnitude greater. There are excep-
tions, but usually libre software projects are carried
out by people from different countries, not working
for the same company, devoting different amount
of effort to the project, interacting mainly through
the Internet, and in most cases (specially in large
projects), the developer team have never been phys-
ically together. This can effectively increase the
development cost as members of a team have to in-
teract over Internet-specific channels (mailing lists,
IRC, etc.) which typically provide a lower com-
munication bandwidth than face to face communi-
cation. Cultural differences and opinions can also
generate misunderstandings in written communica-
tion which can lead to a cost increase.

Some of these factors increase the effort needed to
build the software, while some others decrease it. With-
out analyzing in detail the impact of these (and other)
factors, the estimation models in general, and CO-
COMO in particular, may not be directly applicable to
libre software development.

5.4 Comparison with size estimations of other
systems

To put the numbers shown above into context, here
we offer estimations for the size of some operating sys-
tems. Note that these comparisons are always difficult,
and specially when we compare with proprietary sys-
tems.

As reported in [15] (for Windows 2000), in [21]
and [12] (for Red Hat Linux), some additional studies
by us not yet published (for Fedora Core 3) and in [19]
and [16] (for the rest of the systems), this is the estimated
size for several operating systems, in lines of code (all
numbers are just approximations):

• Microsoft Windows 3.1: 3,000,000

• Sun Solaris: 7,500,000

• Microsoft Windows 95: 15,000,000

• Red Hat Linux 6.2: 17,000,000

• Microsoft Windows 2000: 29,000,000

• Red Hat Linux 7.1: 30,000,000

• Microsoft XP: 40,000,000

• Red Hat Linux 8.0: 50,000,000

• Fedora Core 3: 70,000,000

• Debian 3.0: 105,000,000

• Debian 3.1: 245,000,000

• Debian 4.0: 283,000,000

Most of these estimations (in fact, all of them, except
for Red Hat Linux) are not detailed, and is difficult to
know what they consider as a line of code. However, the
estimations should be similar enough to SLOC counting
methods to be suitable for comparison.

Note also that, while both the Red Hat’s and Debian’s
operating systems include many applications for a wide
range of purposes, with even several applications in the
same category in many situations, both Microsoft’s and
Sun’s operating systems are much more limited in this
way, with some software packages sold outside of the
core operating system even if developed by the same
company. If the size of the most common applications
used in those environments (for example, office suites)
were added, their size would be much larger. However,

9

it is also true that all those applications are not devel-
oped nor put together by the same team of developers,
as is the case in Linux-based distributions.

From these numbers, it can be seen that Linux-based
distributions in general, and Debian releases in particu-
lar, are some of the largest pieces of software ever put
together by a group of developers.

6 Conclusions

In this paper, we have presented some results of our
work on counting the number of SLOC of Debian 4.0.
They represent the state of the Debian GNU/Linux dis-
tribution in April 2007. Our estimation is that it amounts
for more than 283,000,000 SLOC. Using the COCOMO
model, this implies a cost (using traditional, proprietary
software development models) close to 5,400 million
Euros and an effort of more than 73,000 person-years.
The list of the largest packages, and an analysis by pro-
gramming language used are also provided.

When coming to the details, some interesting data
can be shown. For instance, the most popular lan-
guage in the distribution is C (close to 51%), followed
by C++ (more than 18%), Shell (about 10%), Java,
PERL and LISP (both about 3%) and other. The largest
packages in Debian 4.0 are OpenOffice.org (nearly
5,200,000 SLOC), the Linux Kernel (about 5,000,000
SLOC), ia32-libs (nearly 4,000,000), and gcc-4.1 (about
3,600,000).

There are not many detailed studies of the size of
modern, complete operating systems. Of them, the work
by David A. Wheeler, counting the size of Red Hat 6.2
and Red Hat 7.1 is the most comparable. Another in-
teresting paper, with some intersection with this paper
is [10], a study on the evolution over time of the Linux
kernel. Some other papers, already referenced, provide
total counts of some Sun and Microsoft operating sys-
tems, but they are not detailed enough, except for pro-
viding estimations for the whole of the system.

Finally, we find it important to repeat once more that
we are offering only estimations. However, we believe
they are accurate enough to draw some conclusions and
to compare with other systems.

References

[1] J. J. Amor, J. M. Gonzalez-Barahona, G. Robles, and
I. Herraiz. Measuring libre software using Debian 3.1
(Sarge) as a case study: preliminary results.Upgrade
Magazine, Aug. 2005.

[2] J. J. Amor, G. Robles, J. M. González-Barahona, and
I. Herraiz. From pigs to stripes: A travel through De-
bian. InProceedings of the DebConf5 (Debian Annual
Developers Meeting), Helsinki, Finland, July 2005.

[3] B. B. Boehm. Software Engineering Economics. Pren-
tice Hall, 1981.

[4] Canonical. Ubuntu project, Apr. 2004.
http://www.ubuntu.com/.

[5] Debian. Debian free software guidelines (part of the de-
bian social contract), Apr. 2004.
http://www.debian.org/social contract.

[6] Debian. Debian social contract, Apr. 2004.
http://www.debian.org/social contract.

[7] Debian. Debian policy manual, Oct. 2006.
http://www.debian.org/doc/
debian-policy/.

[8] Debian. Debian gnu/linux 4.0 release information, Apr.
2007.
http://www.debian.org/releases/4.0.

[9] R. A. Ghosh et al. Study on the: Economic impact
of open source software on innovation and the com-
petitiveness of the information and communication
technologies (ict) sector in the eu. Technical report,
UNU-MERIT, Nov. 2006.
http://ec.europa.eu/enterprise/ict/
policy/doc/2006-11-20-flossimpact.
pdf.

[10] M. W. Godfrey and Q. Tu. Evolution in Open Source
software: A case study. InProceedings of the Interna-
tional Conference on Software Maintenance, pages 131–
142, San Jose, California, 2000.

[11] J. M. Gonzalez-Barahona, M. A. Ortuno Perez, P. de las
Heras, J. Centeno, and V. Matellan. Counting potatoes:
the size of Debian 2.2.Upgrade Magazine, II(6):60–66,
Dec. 2001.

[12] J. M. Gonźalez-Barahona, G. Robles, M. Ortuño-Ṕerez,
L. Rodero-Merino, J. Centeno-González, V. Matelĺan-
Olivera, E. Castro-Barbero, and P. de-las Heras-Quirós.
Anatomy of two gnu/linux distributions, 2004. Chap-
ter in book ”Free/Open Source Software Development”
edited by Stefan Koch and published by Idea Group, Inc.

[13] Hispalinux. Proyecto metadistros, Feb. 2004.
https://forja.rediris.es/projects/
metadistros/.

[14] K. Knopper. Knoppix: Live linux filesystem on cd, Jan.
2003.
http://www.knopper.net/knoppix/
index-en.html.

[15] M. Lucovsky. From nt os/2 to windows 2000 and
beyond - a software-engineering odyssey. 4th usenix
windows systems symposium, 2000.
http://www.usenix.org/events/
usenix-win2000/invitedtalks/
lucovsky html/.

[16] G. McGraw. From the ground up: the dimacs software
security workshop.IEEE Security and Privacy, 1(2):59–
66, 2003.

10

[17] G. Robles, J. J. Amor, and J. M. González-Barahona.
Debian counting, Apr. 2007.
http://debian-counting.libresoft.es/.

[18] G. Robles, J. M. Gonźalez-Barahona, and
M. Michlmayr. Evolution of volunteer participa-
tion in libre software projects: evidence from Debian.
In Proceedings of the 1st International Conference on
Open Source Systems, pages 100–107, Genoa, Italy,
July 2005.

[19] B. Scheneier. Software complexity and security.Crypto-
Gram Newsletter, 2000.

[20] D. Wheeler. Sloccount.
http://www.dwheeler.com/sloccount/.

[21] D. A. Wheeler. More than a gigabuck: Estimating
GNU/Linux’s size, June 2001.
http://www.dwheeler.com/sloc/
redhat71-v1/redhat71sloc.html.

11

